14,300 research outputs found

    The Planck SZ Cluster Catalog: Expected X-ray Properties

    Full text link
    Surveys based on the Sunyaev-Zel'dovich (SZ) effect provide a fresh view of the galaxy cluster population, one that is complementary to X-ray surveys. To better understand the relation between these two kinds of survey, we construct an empirical cluster model using scaling relations constrained by current X-ray and SZ data. We apply our model to predict the X-ray properties of the Planck SZ Cluster Catalog (PCC) and compare them to existing X-ray cluster catalogs. We find that Planck should significantly extend the depth of the previous all-sky cluster survey, performed in the early 1990s by the ROSAT satellite, and should be particularly effective at finding hot, massive clusters (T > 6 keV) out to redshift unity. These are rare objects, and our findings suggest that Planck could increase the observational sample at z > 0.6 by an order of magnitude. This would open the way for detailed studies of massive clusters out to these higher redshifts. Specifically, we find that the majority of newly-detected Planck clusters should have X-ray fluxes 10^{-13} ergs/s/cm^2 < f_X[0.5-2 keV] < 10^{-12} ergs/s/cm^2, i.e., distributed over the decade in flux just below the ROSAT All Sky Survey limit. This is sufficiently bright for extensive X-ray follow-up campaigns. Once Planck finds these objects, XMM-Newton and \textit{Chandra} could measure temperatures to 10% for a sample of ~ 100 clusters in the range 0.5 < z < 1, a valuable increase in the number of massive clusters studied over this range.Comment: 8 pages, 7 figures submitted to A&A; accepted 29 May 201

    The Physical State of the Intergalactic Medium or Can We Measure Y?

    Full text link
    We present an argument for a {\it lower limit} to the Compton-yy parameter describing spectral distortions of the cosmic microwave background (CMB). The absence of a detectable Gunn-Peterson signal in the spectra of high redshift quasars demands a high ionization state of the intergalactic medium (IGM). Given an ionizing flux at the lower end of the range indicated by the proximity effect, an IGM representing a significant fraction of the nucleosynthesis-predicted baryon density must be heated by sources other than the photon flux to a temperature \go {\rm few} \times 10^5\, K. Such a gas at the redshift of the highest observed quasars, z5z\sim 5, will produce a y\go 10^{-6}. This lower limit on yy rises if the Universe is open, if there is a cosmological constant, or if one adopts an IGM with a density larger than the prediction of standard Big Bang nucleosynthesis.Comment: Proceedings of `Unveiling the Cosmic Infrared Background', April 23-25, 1995, Maryland. Self-unpacking uuencoded, compressed tar file with two figures include

    An SZ/X-ray galaxy cluster model and the X-ray follow-up of the Planck clusters

    Full text link
    Sunyaev-Zel'dovich (SZ) cluster surveys will become an important cosmological tool over next few years, and it will be essential to relate these new surveys to cluster surveys in other wavebands. We present an empirical model of cluster SZ and X-ray observables constructed to address this question and to motivate, dimension and guide X-ray follow-up of SZ surveys. As an example application of the model, we discuss potential XMM-Newton follow-up of Planck clusters.Comment: 4 pages, 5 figures. To appear in the proceedings of the XXXXIIIrd Rencontres de Morion

    A New Local Temperature Distribution Function for X-ray Clusters: Cosmological Applications

    Get PDF
    (abridged) We present a new determination of the local temperature function of X-ray clusters. We use a new sample comprising fifty clusters for which temperature information is now available, making it the largest complete sample of its kind. It is therefore expected to significantly improve the estimation of the temperature distribution function of moderately hot clusters. We find that the resulting temperature function is higher than previous estimations, but agrees well with the temperature distribution function inferred from the BCS and RASS luminosity function. We have used this sample to constrain the amplitude of the matter fluctuations on cluster's scale of 8Ω031h18\sqrt[3]{\Omega_0}^{-1}h^{-1}Mpc, assuming a mass-temperature relation based on recent numerical simulations. We find σ8=0.6±0.02\sigma_8 = 0.6\pm 0.02 for an Ω0=1\Omega_0 = 1 model. Our sample provides an ideal reference at z0z \sim 0 to use in the application of the cosmological test based on the evolution of X-ray cluster abundance (Oukbir & Blanchard 1992, 1997). Using Henry's sample, we find that the abundance of clusters at z=0.33z = 0.33 is significantly smaller, by a factor larger than 2, which shows that the EMSS sample provides strong evidence for evolution of the cluster abundance. A likelihood analysis leads to a rather high value of the mean density parameter of the universe: Ω=0.92±0.22\Omega =0.92 \pm 0.22 (open case) and Ω=0.86±0.25\Omega =0.86 \pm 0.25 (flat case), which is consistent with a previous, independent estimation based on the full EMSS sample by Sadat et al.(1998). Some systematic uncertainties which could alter this result are briefly discussed.Comment: 31 pages, 12 figures, mathches the version published in Astronomy and Astrophysic
    corecore